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Deep learning assisted variational Hilbert
quantitative phase imaging
Zhuoshi Li1,2,3, Jiasong Sun1,2,3, Yao Fan1,2,3, Yanbo Jin1,2,3, Qian Shen1,2,3,
Maciej Trusiak4, Maria Cywińska4, Peng Gao5*, Qian Chen3* and
Chao Zuo1,2,3*

We propose a high-accuracy artifacts-free single-frame digital holographic phase demodulation scheme for relatively low-
carrier  frequency  holograms —deep  learning  assisted  variational  Hilbert  quantitative  phase  imaging  (DL-VHQPI).  The
method, incorporating a conventional deep neural  network into a complete physical  model utilizing the idea of residual
compensation, reliably and robustly recovers the quantitative phase information of the test objects. It can significantly al-
leviate spectrum-overlapping-caused phase artifacts under the slightly off-axis digital holographic system. Compared to
the conventional end-to-end networks (without a physical model), the proposed method can reduce the dataset size dra-
matically while maintaining the imaging quality and model generalization. The DL-VHQPI is quantitatively studied by nu-
merical simulation. The live-cell  experiment is designed to demonstrate the method's practicality in biological research.
The proposed idea  of  the  deep learning-assisted  physical  model  might  be  extended to  diverse  computational  imaging
techniques.
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 Introduction
Quantitative  phase  imaging  (QPI),  as  a  powerful  label-
free  imaging  technique,  enables  dynamic  2D  and  3D
non-destructive  imaging  of  completely  transparent
structures1−3. It  uses  the refractive  index as  an endogen-
ous contrast agent to generate subcellular-specific quant-
itative  maps  of  analyzed  live  bio-structure4,5. QPI  solu-
tions  based  on  digital  holographic  microscopy  (DHM)
encode  a  complex  wavefront  information  into  intensity

modulations  by  the  interference  of  a  scattered  sample
wave  and  a  reference  wave6−9. And  it  can  robustly  per-
form the  quantitative  analysis  of  wave-matter  interac-
tions  by  decoding  phase  delay  from  a  hologram.  DHM
has emerged as a valuable means in the biomedical fields,
such  as  measurements  for  stain-free  biological  cells3,10 ,
optical  metrology  of  nanostructures11−14, and  drug  re-
lease monitoring in vitro15.

Regarding the phase demodulation strategy employed, 
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there are two main configurations for holographic wave-
front acquisition in DHM, i.e., in-line and off-axis digit-
al holography (DH). In-line DH records complete wave-
front  information by  the  interference  of  the  object  light
and  the  reference  light  on  the  same  optical  axis,  which
can realize full detector-bandwidth phase reconstruction.
However, due to the superimposed twin image, the phase
retrieval results of samples are severely impacted by ima-
ging artifacts.  It  always needs to be processed via iterat-
ive  phase  retrieval16,17 or  noniterative  phase-shifting
methods18−20,  which  dramatically  sacrifices  the  temporal
resolution.  Therefore,  it  is  difficult  for  the  in-line  DH,
which is  vulnerable  to  external  disturbance  and  vibra-
tion, to  be  applied  to  dynamic  measurement.  Alternat-
ively,  off-axis DH implements twin-image separation by
introducing  a  slight  angle  between  the  object  beam and
reference  beam  and  recovers  the  complex  wavefront  of
the  sample  from  the  single-frame  off-axis  hologram.
Whereas, for achieving the separation of autocorrelation
and cross-correlation terms in  the  spatial  frequency do-
main (SFD),  the  off-axis  DH  needs  to  provide  a  suffi-
ciently  high  carrier  frequency  at  the  expense  of  the
space-bandwidth product (SBP) of the imaging system21.
The slightly off-axis  DH regime,  as  a  single-frame high-
SBP DH imaging solutions,  is  therefore proposed22−24.  It
optimizes SBP through full spectral separation of conjug-
ated  object  lobes  while  leaving  the  autocorrelation  term
partially  overlapped  with  information-carrying  cross-
correlation terms.  Under  this  configuration,  the  inevit-
able  spectrum  overlapping  causes  phase  artifacts,  which
greatly  degrades  the  imaging  quality  and  impairs  the
practicality of the slightly off-axis DH configuration.

High-accuracy  artifacts-free  phase  recovery  from  the
low-carrier  frequency  holograms  is  the  key  to  slightly
off-axis DH application. This process is presently imple-
mented by suppressing autocorrelation term iteratively25,
utilizing  dual-frame  decoding  scheme26,27,  employing
second  wavelength  assistance28 and  performing  the  1D
limited processing29,30.  With inspiration from the theory
of “cepstrum” and homomorphic filtering31, a slightly off-
axis  DH  demodulation  scheme  based  on  the  Kramers-
Kronig  (KK)  relations  is  proposed,  which  utilizes  the
half-space  bandwidth  of  the  sensor  to  achieve  high-SBP
imaging32,33. Although it is able to increase the SBP of full
complex field  recovery  significantly,  it  inevitably  re-
quires  intensity  restrictions  on  the  object  and  reference
beams and the separation of  the cross-correlation terms
of the interferogram in the extended SFD. Noteworthily,

an  exquisite  low-carrier  frequency  fringe  demodulation
approach has been presented recently, namely variation-
al  Hilbert  quantitative  phase  imaging  (VHQPI)34.  The
VHQPI, as  an end-to-end pure numerical  add-on mod-
ule, deploys the merger of tailored variational image de-
composition35 and enhanced Hilbert spiral transform36 to
achieve quantitative  phase  recovery.  It  adaptively  allevi-
ates the  overlapped-spectrum  problem  and  robustly  de-
modulates  high-quality  phase  information,  performing
excellent practicality in biological applications.

Although VHQPI has demonstrated excellent low-car-
rier frequency  fringe  demodulation  capability,  the  al-
gorithm-inherent  limitations (e.g.,  parameter  robustness
and  iterative  stability)  still  cause  non-sufficient  image
frequency  component  extraction,  resulting  in  imaging
artifacts in the phase reconstruction results.  Deep learn-
ing (DL),  as  a  subfield  of  machine  learning,  has  cur-
rently  gained  extensive  attention  in  the  field  of  optical
metrology  and  demonstrated  great  potential  in  solving
optical  metrology  tasks37−46.  When  sufficient  training
data is  collected in an environment that reproduces real
experimental conditions, the trained model may have ad-
vantages over physics-model-based approaches on some
issues (e.g.,  computing  speed,  parameter  adaptivity,  al-
gorithm complexity)37. Specifically, in terms of a series of
ill-posed inverse phase retrieval problems, the tradition-
al physical  model  tends  to  exhibit  higher  physics  com-
plexity and time consumption. Driven by a large dataset,
the deep  neural  network  (DNN)  can  directly  and  effi-
ciently  reconstruct  the  phase  and  amplitude  images  of
the  objects  from  the  captured  holograms47−49. Neverthe-
less,  in DL-based phase recovery tasks, it  is pretty tricky
and  laborious  to  capture  massive  datasets  and  generate
the corresponding ground truth, especially when applied
to bio-samples.  Deep  image  prior  (DIP)  applies  an  un-
trained network  to  the  solution  of  several  inverse  prob-
lems  without  a  massive  training  dataset  and  ground
truth,  which  can  fit  a  randomly  initialized  DNN  to  a
single  corrupted  image50. Inspired  by  the  DIP,  an  un-
trained network model named “PhysenNet” is proposed,
which  incorporates  a  complete  physical  model  into  the
conventional  DNN  to  achieve  phase  retrieval  from  a
single intensity image51.

Inspired by the successful  application of  the interplay
between DNN and the physical  model,  in  this  work,  we
propose  a  DL-assisted  variational  Hilbert  quantitative
phase  imaging  approach  (DL-VHQPI).  Unlike  the
massive-data-driven  DL  training  model,  DL-VHQPI,
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which  utilizes  DNN  to  compensate  and  optimize  the
possible  solutions  of  the  physics-driven  model,  can
achieve high-precision  artifacts-free  phase  recovery  us-
ing only a small fraction datasets. Specifically, VHQPI, as
the underlying physical model, can complete the prelim-
inary  extraction  of  the  background  components  of  the
fringes  to  provide a  physical  prior  for  the deep learning
model. The  DNN  compensates  for  the  image  frequen-
cies that cannot be extracted by the physical model using
the  idea  of  residual  compensation.  Due  to  the  physical
model  reducing  the  information  entropy  of  the  dataset,
the DL-VHQPI  performs  higher  reconstruction  accur-
acy utilizing less than one-tenth of the dataset of the con-
ventional end-to-end model  (without the physical  mod-
el). The  simulation  experiments  quantitatively  demon-
strate that the proposed method can achieve high-accur-
acy artifacts-free quantitative phase imaging from single-
frame low-carrier  frequency  holograms.  And the  results
of  live-cell  experiments  demonstrate  the  practicality  of
the method in biological research.

 Principle of VHQPI
The  VHQPI,  as  the  physical  model  of  the  DL-VHQPI,
adaptively and  effectively  completes  the  low-carrier  fre-
quency fringe  demodulation  employing  the  unsuper-
vised variational  image  decomposition  (uVID)  and  en-
hanced Hilbert spiral transform (HST). This section will
focus on describing the process details and physical lim-
itations of this method. In the DH wavefront recording,
the interferogram containing the required object inform-
ation  is  constructed  upon the  coherent  superimposition
of the object and reference beams. The intensity distribu-
tion of the recorded hologram can be expressed as: 

I = I1 + I2 + 2
√
I1I2cos(θ) + n = a+ bcos(θ) + n . (1)

a
I1 I2

n
θ

b 2
√
I1I2

It  consists  of  a  sum  of  three  fundamental  intensity
components: background ( , incoherent sum of intensit-
ies  and  of  interfering  beams),  high-frequency  noise
( ), and coherent interference fringes term comprised by
a cosine function modulated in phase ( ) and amplitude
( , ). Acquiring the accurate fringes term from the
three  components  is  the  prerequisite  of  high-precision
artifacts-free  phase  recovery.  The  uVID  approach
achieves image frequency components extraction, which
is  based  on  the  notion  of  the  classical  variational  image
decomposition  to  separate  the  information  components
of the image with two steps in terms of methodology52,53:
1) A block-matching 3D (BM3D) algorithm is employed

to  remove  noise  with  remarkable  efficiency54; 2)  Back-
ground-fringes differentiation is performed using modi-
fied  Chambolle  projection  algorithm  with  an  automatic
stopping criterion to set  the number of  projections,  and
there  is  no  need  to  pre-set  any  parameter  values35.  The
based-on uVID image frequency components extraction
process is shown in Step 1 of Fig. 1. Although the uVID
provides a robust and automatic one-stop-shop solution
for single-frame fringe pattern analysis, there are physic-
al limitations in the process of frequency component ex-
traction, i.e.,  iterative  instability  and  parameter  robust-
ness,  which  directly  cause  non-sufficient  background
term  removal  and  then  impair  phase  recovery  accuracy
and artifacts-suppression effect52.

b

To  recover  the  phase  information  of  the  object,  the
uVID-filtered noise-free  zero-mean-valued  interfero-
gram  is  then  analyzed  using  the  HST  algorithm36,  as
shown  in  Step  2  of Fig. 1.  The  HST  is  the  two-dimen-
sional  variant  of  the  Hilbert  transform  (HT),  in  which
the complex analytic  signal  can be constructed,  whereas
several requirements  must  be  fulfilled.  First,  the  pro-
cessed interferogram must be of zero mean value, which
is satisfied based on background term removal using the
uVID  approach.  And  the  amplitude  term  (  in Eq.  (1))
has to be a slowly varying function. This is the so-called
Bedrosian theorem which can be applied to general pure-
phase  objects  at  relatively  low  carrier  frequencies55.  The
complex analytic  signal  constructed  by  HST  can  be  ex-
pressed as 

AFP = 2
√
I1I2cos(θ)− iexp(−iβ)

· F−1{SPF ∗ F [2
√
I1I2cos(θ)]} , (2)

AFP SPF
F F−1

β 2π

SPF

where,  denotes  the analytic  fringe pattern and 
is  the  spiral  phase  function;  and  denote  Fourier
transform (FT) and inverse Fourier transform (IFT) op-
erator respectively. It is important to emphasize that car-
rier-free  single-shot  interferogram  analysis  is  a  fully  2D
phase  demodulation  problem,  whereas  carrier-based  FT
phase  demodulation  is  a  1D  simplification  of  the  HT
analytic  relation.  The  HST,  therefore,  requires  the  local
fringe  direction  map  ( ,  modulo )56.  The  modulus
value and angle of the 2D complex analytic signal consti-
tute  the  intensity  and phase  in  QPI,  respectively.  is
defined as 

SPF(u, v) = u+ i · v√
u2 + v2

= exp[i · ϕ(x, y)] , (3)

(u, v) (x, y)
ϕ(x, y)

where  is  the  coordinate  of  corresponding to
the SFD.  is the polar coordinate phase expression.
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Figure 1 specifically showcases the schematic diagram of
the VHQPI-based  low-carrier  interferogram  quantitat-
ive phase demodulation algorithm.

 Deep learning assisted VHQPI model
VHQPI  has  been  proven  to  have  excellent  robustness
and practicality in low-carrier frequency fringe demodu-
lation  issue  though34.  However,  the  algorithm-inherent
iterative instability and parameter robustness restrict the
image frequency component extraction capability, which
will cause the non-perfect background term removal. DL
methods driven by massive datasets provide a new route
to address this problem by virtue of their high-powerful
image  feature  extraction  characteristics.  Whereas,  when
encountering  insufficient  training  data,  which  is  very
common, the DL method based on massive datasets may
have a poor effect. A feasible scheme is to train the DNN
on  a  stronger-constrained  available  standardized
dataset57.  Here,  we  employ  Shannon  entropy  theory  of
the images in the dataset for that purpose: the lower the
entropy of the datasets is, the more constrained prior in-
formation is,  giving it  a  better  same-domain generaliza-
tion  ability58,59.  Therefore,  in  the  proposed  DL-assisted
VHQPI model, the uVID is utilized to extract the image
background term as the physical prior of the network to
reduce  the  dataset's  entropy.  The  first  convolutional
neural  network  (CNN1)  is  used  to  “learn ”  the  residual
terms and assists the physical model to complete the pre-

liminary  estimation  of  the  background  components  of
the fringes.  Furthermore,  to  further  improve  the  ima-
ging accuracy,  the  original  hologram  and  the  prelimin-
ary  estimation  background  are  re-fed  into  the  model
(CNN2) for advanced component extraction. Dual-chan-
nel  input  is  used  because  the  preliminarily  estimated
background  terms  have  been  very  close  to  the  ground
truth  after  the  first  residual  compensation  by  CNN1.
Hence,  the  preliminary  estimated  background  can  be
used  to  provide  the  network  with  feature  guidance  and
helps CNN2 achieve the advanced component extraction.

ε1

ε2

As depicted in Fig. 2, with the original hologram as in-
put, CNN1 completes the preliminary background com-
ponent  extraction  by  compensating  for  the  residual  ( )
of  the  background  component  acquired  by  uVID,  as
shown in Fig. 2(b). With the preliminary estimated back-
ground  term  and  the  original  hologram,  the  CNN2  (as
shown  in Fig. 2(c))  uses  the  two  as  dual-channel  inputs
to  implement  the  more  advanced  background  residual
( ) compensation. After the high-accuracy fringes terms
extraction,  the  complete  complex  analytic  signal  can  be
constructed by HST. And then the final phase results are
recovered  by  calculating  the  angle  of  the  2D  complex
analytic signal. The whole method flow chart is shown in
Fig. 2(a).

Moreover, both CNN1 and CNN2 networks are com-
posed of a convolutional layer (Conv),  a group of resid-
ual  blocks  (containing  four  residual  blocks),  and  two
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(H,W,C)
W

C

convolutional  layers.  Each residual  block comprises  two
sets of Convs stacked one above the other.  The network
architecture uses Batch Normalization60 and ReLU activ-
ation61 to accelerate  the  model  convergence.  It  estab-
lishes  a  shortcut  between  input  and  output,  which  can
solve  the  problem  of  accuracy  decline  as  the  network
deepens, thereby easing the training process. The output
of the Convs is a 3-D tensor of shape , where H
and  are the  height  and  width  of  pixels  of  the  holo-
gram respectively, and  is the number of channels. The
hyperparameters  of  the  two  networks, i.e.,  the  weights,
bias, and  convolutional  kernels,  are  trained  using  back-
propagation on mean-squared errors between the results
of  the  network  output  and  the  ground  truth.  The  loss
function is computed as 

Loss(ω) = 1
H×W

∥∥Yω
output − G

∥∥2
, (4)

ω
Youtput G
where  represents  the  parameter  space  of  the  model,

 is the results predicted by the model, and  is the
ground truth.

 Experiments and results
In  this  section,  we  demonstrate  the  performance  of  the

proposed  DL-VHQPI  method  over  the  conventional
physics-driven low-carrier  frequency  fringe  demodula-
tion techniques and pure DL approach without a physic-
al model (DL-noPhy) through numerical simulation and
live-cell experiment. A rich set of paired training data is
the  prerequisite  for  network  generalization  during  DL
training.  It  is  challenging  to  acquire  a  reliable  ground
truth in the real-world DH system due to environment-
induced  instability  and  system-inherent  speckle  noise.
Consequently, we simulated low-carrier frequency holo-
grams  and  the  corresponding  ground  truth  for  training
and quantitative analysis.  We separately constructed the
complex amplitude distributions of the object and refer-
ence light  waves,  and  then  the  holograms  can  be  con-
structed by solving the square of the modulus of the sum
of the  two.  The  sum of  the  squares  of  the  modulus  val-
ues  of  the  two  was  calculated  to  obtain  the  background
(ground  truth)  needed  for  training.  The  more  specific
process  can  be  found  in  Supplementary  information
Section 1.

In the  live-cell  experiment,  we  used  the  Digital  holo-
graphic  smart  computational  light  microscope  (DH-
SCLM) developed by SCILab,  and turned it  to a slightly
off-axis  state  for  hologram  acquisition1.  In  the  DH-
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Fig. 2 | Deep learning-assisted VHQPI. (a) Total network structure, combining uVID and HST with CNN respectively for phase reconstruction.

(b) CNN1 takes a hologram as input and consists of three convolutional layers and a group of residual blocks to achieve compensation of back-

ground residuals by learning. (c) The CNN2 network structure is the same as CNN1, except that CNN2 combines the original hologram and the

result of the first process into a two-channel input for advanced background compensation.
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SCLM,  the  object  wave  transmitting  the  objective  lens
(UPLanSAPO  ×20/0.45NA,  Olympus,  Japan)  interferes
with  the  reference  light  and  is  recorded  by  the  camera
(The Imaging Source DMK 23U274, 1600×1200, 4.4 μm).
The  central  wavelength  of  the  illumination  is  532  nm.
The used  sample  is  Henrietta  Lacks  (HeLa)  human cer-
vical  cancer  cells  cultured in  DMEM medium with 10%
fetal bovine  serum  under  standard  cell  culture  condi-
tions (37.2 °C in 5% CO2 in a humidified incubator). To
acquire  the  ground  truth  from  the  configuration,  each
intensity  map  of  the  object  and  reference  light  paths
needs  to  be  captured  separately  under  the  highly  stable
condition  of  the  holographic  system (Refer  to  Section  2
of the  Supplementary  Information  for  detailed  pro-
cessing). The  complete  training  process  was  implemen-
ted  using  the  TensorFlow  framework  (Google)  and  was
computed  on  a  GTX  Titan  graphics  card  (NVIDIA).  A
fixed learning rate of 0.0001 for the experiment is adop-
ted for the Adam optimizer62.

 Simulation
Figure 3 presents the experimental results under the nu-
merical simulation,  demonstrating  the  quantitative  ana-
lysis  between  DL-VHQPI  and  the  conventional  single-
frame  fringe  demodulation  techniques. Figure 3(a)
shows  the  phase  result  recovered  by  the  conventional
Fourier  transform  (FT)  method.  It  can  be  seen  that  the
phase artifacts severely disturb imaging results due to the
spectrum-overlapped problem in the SFD.  Although re-
ducing the filtering window size can attenuate the phase
artifacts,  this  will  sacrifice  the  SBP  of  the  system  while
causing  blurred  imaging.  More  details  about  it  can  be
found in Supplementary Section 3. The size of the filter-
ing  window  used  in  the  FT-based  phase  reconstruction
results  shown  in Fig. 3(a) is calculated  under  the  simu-
lated numerical aperture (NA), as shown in the red filter-
ing window in Fig. S2(a) of Supplementary Section 3. In
VHQPI, the uVID can extract the fringes term from the
hologram;  however,  the  non-perfect  background  term
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removal  still  inevitably  causes  imaging  artifacts,  as
shown in Fig. 3(b). In contrast, as presented in Fig. 3(c),
the  experimental  results  demonstrate  DL-VHQPI’s ex-
cellent  performance,  in  terms  of  artifacts  suppression,
over  two  physics-driven  methods:  FT  and  VHQPI. Fig-
ure 3(d) is the ground truth recovered by phase recovery
after  theoretical  background  removal.  The  magnified
views  of  the  corresponding  rectangular  boxes  in Fig.
3(a–d),  as  shown in Fig. 3(j1–j4),  are  the phase gradient
images by digital differential interference contrast (DIC)
for them. To discuss the performance of methods intuit-
ively  and  quantitatively,  we  respectively  calculated  the
Mean  Absolute  Error  ( ), Structural  Similarity  In-
dex  ( ),  and  Peak  Signal-to-Noise  Ratio  ( )
between the  FT,  VHQPI,  and  DL-VHQPI  phase  recov-
ery results and the ground truth. Compared with the FT
and  VHQPI  methods, Fig. 3(h) quantitatively demon-
strates  that  DL-VHQPI  has  an  excellent  phase  recovery
accuracy  and  artifacts-suppression  effect  (More  than  10
times improvement in precision.).  The background-part
cross-section  of  the  four  phase  results  depicted  in Fig.
3(i) shows the phase result reconstructed by DL-VHQPI
has  a  higher  similarity  to  the  ground  truth,  which  also
demonstrates that  it  can  be  more  effective  in  suppress-
ing the fringe-like error of the background part.

In addition,  we  also  designed  a  comparison  experi-
ment  with  DL-noPhy (The  specific  network  is  provided
in  the  Section  4  of  Supplementary  information)  to
demonstrate the high-efficiency and high-accuracy char-
acteristics  exhibited  by  the  proposed  method. Table 1
quantitatively  shows  the  comparison  results  of  the  DL-
VHQPI  and  DL-noPhy;  DL-VHQPI  performs  a  higher
phase  reconstruction  accuracy  while  only  utilizing  one-
tenth  of  the  datasets  of  DL-noPhy.  The  reason  is  that
DL-VHQPI adopts a physical model (uVID) to the back-
ground-component extraction process  of  the fringe pat-
tern  and  acquires  the  residual  components  for  training,
which is inherently a process of image entropy reduction.
According  to  the  Shannon  entropy  theory,  lower  image
entropy implies more image constraints, which provides

DNN with a more powerful same-domain generalization
ability.  The  simulated  holograms  with  the  size  of
160×160  were  fed  to  the  network.  During  the  training
process,  the CNN1 of DL-VHQPI over 150 epochs took
1 hour and 20 minutes, and CNN2 over 150 epochs took
1.5 hours; in contrast, DL-noPhy over 150 epochs took 7
hours  and  50  minutes.  Fewer  training  datasets  for  the
same DNN model naturally mean shorter training time,
so  our  method  performs  higher  training  efficiency  than
DL-noPhy while ensuring excellent imaging quality.

 Live-cell experiment on HeLa cells

×

π(NA/λ)2

We  performed  holographic  biological  experiments  on
HeLa cells  under a  ×20/0.45NA lens to demonstrate the
application of the method in biological research. The de-
noised  interferogram  presented  in Fig. 4(a) is  of  overall
low spatial  carrier  frequency,  which  results  in  a  spec-
trum overlapping  of  cross-correlation  and  autocorrela-
tion terms, as shown in Fig. 4(b). Figure 4(c) and 4(d) re-
spectively  show  the  phase  reconstruction  of  captured
low-carrier  frequency  holograms  utilizing  the  FT  and
DL-VHQPI  methods  for  HeLa  cells.  The  field  of  view
(FoV)  of Fig. 4(c) and 4(d) is  0.093  mm2 (The  Imaging
Source DMK 23U274, 1600 1200, 4.4 μm), and the SBP
of  the  complex  amplitude  image  is 210000 pixels  [the
area of the FoV, multiplied by the area of the spatial fre-
quency  band, ]. To  compare  the  imaging  res-
ults of  the  two  methods  in  detail,  we  selected  two  re-
gions of  interest  (ROI,  Area1  and  Area2)  on  the  speci-
mens,  and their  magnified views are shown in Fig. 4(e1,
e3, f1, f3).  Additionally, Fig. 4(e2, e4, f2, f4) vividly de-
pict  the  reconstructed  phase  gradient  images  by  digital
DIC.  It  can  be  revealed  that  spectrum-overlapping-
caused fringe-like error dramatically  degrades the phase
recovery quality.  The  selected  regions  in  the  red  rect-
angle  box  of Fig. 4(c) and 4(d) highlight  the  artifacts-
suppression  capability  on  the  phase  background.  And
the  enlarged  views  after  DIC  processing  are  shown  in
Fig. 4(g) and 4(h),  respectively.  The  background part  of
the  FT-based  reconstructed  phase  result  features  many

 
Table 1 | The quantitative comparison results of DL-VHQPI and DL-noPhy.

 

Evaluation Index
Group1 Group2 Group3 Group4

DL-noPhy DL-VHQPI DL-noPhy DL-VHQPI DL-noPhy DL-VHQPI DL-noPhy DL-VHQPI

MAE 0.0105 0.0065 0.0172 0.0142 0.0202 0.0171 0.0191 0.0170

SSIM 0.9914 0.9969 0.9712 0.9781 0.9637 0.9718 0.9646 0.9697

PSNR 84.8196 88.6846 79.7276 81.5757 78.1123 79.9083 79.4679 80.0348

Size of dataset 3600 324 3600 324 3600 324 3600 324
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coarse diagonal-fringe distributions; in comparison, that
of DL-VHQPI is much smoother. The calculated Stand-
ard  Deviation  (STD)  quantitatively  demonstrates  that
DL-VHQPI  performs  a  better  flatness  distribution.  As
can be readily observed in the cross-section presented in
Fig. 4(i), in the FT phase recovery, the reconstruction er-
rors  brought  by  the  autocorrelation  term  will  introduce
noticeable artifacts  to  the  correct  phase  result.  The  res-
ults demonstrate  that  DL-VHQPI  can  excellently  sup-
press phase  artifacts  and  own  the  effectiveness  and  ap-
plicability for a practical slightly off-axis DH system.

Indeed, reducing the size of the FT filter window may
also be a good way to alleviate artifacts, but this will not
fundamentally  address  the  problem  of  the  overlapped
spectrum and will cause phase imaging blur. The reason
is that reducing the filtering window is at the expense of
the system’s SBP and the high-frequency information of
the object cannot be enclosed in the limited filtering win-
dow. In the Section 3 of Supplementary information, we
experimentally present  the  imaging  effects  under  differ-
ent  FT  filtering  windows  for  living  cells.  To  verify  the

generalization  of  DL-VHQPI,  we  supplemented  a  new
group of  experimental  results  for  living  cells  in  Supple-
mentary Section 5, in which we added a comparison and
discussion  with  the  VHQPI  method  and  the  traditional
FT  method.  The  results  demonstrate  that  DL-VHQPI
still  performs  the  best  artifact-suppression  ability
and  generalizability  under  a  new  group  of  biological
applications.

 Conclusions and discussions
In  summary,  we  proposed a  high-accuracy  artifacts-free
single-frame  low-carrier  frequency  fringe  demodulation
approach for the slightly off-axis DH system, i.e., a mod-
el  using  the  DNN-assisted  physical  process.  When  the
cross-correlation  and  autocorrelation  are  inevitably
aliased in the SFD, the phase reconstruction based on the
conventional  FT  method  cannot  eliminate  the  effect  of
phase artifacts caused by zero-order term6. Although re-
ducing the size of the FT filter window may alleviate the
problem of imaging artifacts, the high-frequency inform-
ation  loss  of  the  object  caused  by  the  limited  filtering
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Fig. 4 | Results of holographic experiments on HeLa cells. (a) Low-carrier-frequency high-contrast hologram collected by slightly off-axis in-

terferometry  system.  (b)  Corresponding  spatial  frequency  spectrum.  (c)  The  result  of  phase  recovery  by  slightly  off-axis  holography  using  FT

method under ×20 lens. (d) The result of phase recovery using DL-VHQPI. (e1–e4) and (f1–f4) correspond to the local amplification results of

“Area1” and “Area2” for the two samples under different phase recovery methods. Where (e2, e4, f2, f4) are the corresponding DIC views, re-

spectively. (g) and (h) The DIC views after partial magnification of the phase map in the corresponding red box. (i) The numerical distribution of

the cross-section and detail-preservation feature of the DL-VHQPI.
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window  will  cause  imaging  blur.  The  method  based  on
Kramers-Kronig relation is proposed on the basis of the
concept  of  “ cepstrum”  and  homomorphic  filtering31,
however, this method must depend on the limited condi-
tion of  the  object-reference  ratio  and  need  the  separa-
tion  of  the  high-order  terms  in  the  extended  SFD32,33.
Furthermore,  the  VHQPI  implements  the  background
component  removal  of  single-frame  hologram  utilizing
the principle of image frequency components extraction,
while it  inevitably  suffers  from  the  non-sufficient  back-
ground  term  removal  caused  by  the  physical  method34.
In  contrast,  DL-VHQPI,  a  novel  DL-assisted  physical
model method, can better suppress phase artifacts while
improving  imaging  accuracy.  The  simulation  result
quantitatively demonstrates  that  the  phase  recovery  ac-
curacy obtained by DL-VHQPI is greatly superior to that
by  FT  and  VHQPI.  Moreover,  the  live-cell  experiment
results demonstrate that our method is applicable in bio-
logical research.

In addition,  it  is  noteworthy that in the classical  end-
to-end DNN model (without a physical model), massive
data pairs are required to train the network model for a
higher reconstruction precision. However, it may be pro-
hibitively  laborious  and  time-consuming  for  the  real-
world  DH  system  to  collect  datasets  and  generate  the
corresponding  ground  truth.  Conversely,  the  proposed
DL-VHQPI can perform better same-domain generaliza-
tion  ability  and  image  data-feature  extraction  capability
without  a  large  of  datasets.  Compared  to  the  classical
end-to-end  DNN  model  (i.e.,  DL-noPhy),  DL-VHQPI
can  achieve  a  higher  reconstruction  accuracy  utilizing
only  a  small  fraction  of  the  datasets  due  to  the  physical
model  reducing the  information entropy of  DL training
objects. Meanwhile,  fewer  datasets  mean  shorter  train-
ing time and higher training efficiency.

The significance of  our work lies  in the multiple pos-
sibilities  of  applying  the  proposed  DL-assisted  physical
model idea to the QPI. This idea can be applied to many
scenarios in which deep learning methods are applied to
the  QPI,  e.g.,  addressing  a  series  of  ill-posed  inverse
phase  retrieval  problems  and  holography-based  high-
throughput optical diffraction tomography (ODT) prob-
lems63−65.  Specifically,  the  artifacts-free  low-carrier-fre-
quency  fringe  demodulation  capability  of  the  proposed
method has application possibilities for ODT imaging of
wide-bandwidth objects. In addition, it has also implica-
tions for  high-throughput  studies  of  high-robust  com-
mon-path  off-axis  interferometer  systems66,67. We  envi-

sion that  the  idea  presented  in  this  research  can  be  ap-
plicable to a diverse range of future computational ima-
ging  techniques,  not  just  limited  to  what  we  discussed
here.
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